Source code for openprompt.prompts.manual_verbalizer

import json
from transformers.tokenization_utils import PreTrainedTokenizer
from yacs.config import CfgNode
from openprompt.data_utils import InputFeatures
import re
from openprompt import Verbalizer
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from openprompt.utils.logging import logger



[docs]class ManualVerbalizer(Verbalizer): r""" The basic manually defined verbalizer class, this class is inherited from the :obj:`Verbalizer` class. Args: tokenizer (:obj:`PreTrainedTokenizer`): The tokenizer of the current pre-trained model to point out the vocabulary. classes (:obj:`List[Any]`): The classes (or labels) of the current task. label_words (:obj:`Union[List[str], List[List[str]], Dict[List[str]]]`, optional): The label words that are projected by the labels. prefix (:obj:`str`, optional): The prefix string of the verbalizer (used in PLMs like RoBERTa, which is sensitive to prefix space) multi_token_handler (:obj:`str`, optional): The handling strategy for multiple tokens produced by the tokenizer. post_log_softmax (:obj:`bool`, optional): Whether to apply log softmax post processing on label_logits. Default to True. """ def __init__(self, tokenizer: PreTrainedTokenizer, classes: Optional[List] = None, num_classes: Optional[Sequence[str]] = None, label_words: Optional[Union[Sequence[str], Mapping[str, str]]] = None, prefix: Optional[str] = " ", multi_token_handler: Optional[str] = "first", post_log_softmax: Optional[bool] = True, ): super().__init__(tokenizer=tokenizer, num_classes=num_classes, classes=classes) self.prefix = prefix self.multi_token_handler = multi_token_handler self.label_words = label_words self.post_log_softmax = post_log_softmax
[docs] def on_label_words_set(self): super().on_label_words_set() self.label_words = self.add_prefix(self.label_words, self.prefix) # TODO should Verbalizer base class has label_words property and setter? # it don't have label_words init argument or label words from_file option at all self.generate_parameters()
[docs] @staticmethod def add_prefix(label_words, prefix): r"""Add prefix to label words. For example, if a label words is in the middle of a template, the prefix should be ``' '``. Args: label_words (:obj:`Union[Sequence[str], Mapping[str, str]]`, optional): The label words that are projected by the labels. prefix (:obj:`str`, optional): The prefix string of the verbalizer. Returns: :obj:`Sequence[str]`: New label words with prefix. """ new_label_words = [] if isinstance(label_words[0], str): label_words = [[w] for w in label_words] #wrapped it to a list of list of label words. for label_words_per_label in label_words: new_label_words_per_label = [] for word in label_words_per_label: if word.startswith("<!>"): new_label_words_per_label.append(word.split("<!>")[1]) else: new_label_words_per_label.append(prefix + word) new_label_words.append(new_label_words_per_label) return new_label_words
[docs] def generate_parameters(self) -> List: r"""In basic manual template, the parameters are generated from label words directly. In this implementation, the label_words should not be tokenized into more than one token. """ all_ids = [] for words_per_label in self.label_words: ids_per_label = [] for word in words_per_label: ids = self.tokenizer.encode(word, add_special_tokens=False) ids_per_label.append(ids) all_ids.append(ids_per_label) max_len = max([max([len(ids) for ids in ids_per_label]) for ids_per_label in all_ids]) max_num_label_words = max([len(ids_per_label) for ids_per_label in all_ids]) words_ids_mask = torch.zeros(max_num_label_words, max_len) words_ids_mask = [[[1]*len(ids) + [0]*(max_len-len(ids)) for ids in ids_per_label] + [[0]*max_len]*(max_num_label_words-len(ids_per_label)) for ids_per_label in all_ids] words_ids = [[ids + [0]*(max_len-len(ids)) for ids in ids_per_label] + [[0]*max_len]*(max_num_label_words-len(ids_per_label)) for ids_per_label in all_ids] words_ids_tensor = torch.tensor(words_ids) words_ids_mask = torch.tensor(words_ids_mask) self.label_words_ids = nn.Parameter(words_ids_tensor, requires_grad=False) self.words_ids_mask = nn.Parameter(words_ids_mask, requires_grad=False) # A 3-d mask self.label_words_mask = nn.Parameter(torch.clamp(words_ids_mask.sum(dim=-1), max=1), requires_grad=False)
[docs] def project(self, logits: torch.Tensor, **kwargs, ) -> torch.Tensor: r""" Project the labels, the return value is the normalized (sum to 1) probs of label words. Args: logits (:obj:`torch.Tensor`): The original logits of label words. Returns: :obj:`torch.Tensor`: The normalized logits of label words """ label_words_logits = logits[:, self.label_words_ids] label_words_logits = self.handle_multi_token(label_words_logits, self.words_ids_mask) label_words_logits -= 10000*(1-self.label_words_mask) return label_words_logits
[docs] def process_logits(self, logits: torch.Tensor, **kwargs): r"""A whole framework to process the original logits over the vocabulary, which contains four steps: (1) Project the logits into logits of label words if self.post_log_softmax is True: (2) Normalize over all label words (3) Calibrate (optional) (4) Aggregate (for multiple label words) Args: logits (:obj:`torch.Tensor`): The original logits. Returns: (:obj:`torch.Tensor`): The final processed logits over the labels (classes). """ # project label_words_logits = self.project(logits, **kwargs) #Output: (batch_size, num_classes) or (batch_size, num_classes, num_label_words_per_label) if self.post_log_softmax: # normalize label_words_probs = self.normalize(label_words_logits) # calibrate if hasattr(self, "_calibrate_logits") and self._calibrate_logits is not None: label_words_probs = self.calibrate(label_words_probs=label_words_probs) # convert to logits label_words_logits = torch.log(label_words_probs+1e-15) # aggregate label_logits = self.aggregate(label_words_logits) return label_logits
[docs] def normalize(self, logits: torch.Tensor) -> torch.Tensor: """ Given logits regarding the entire vocabulary, return the probs over the label words set. Args: logits (:obj:`Tensor`): The logits over the entire vocabulary. Returns: :obj:`Tensor`: The logits over the label words set. """ batch_size = logits.shape[0] return F.softmax(logits.reshape(batch_size, -1), dim=-1).reshape(*logits.shape)
[docs] def aggregate(self, label_words_logits: torch.Tensor) -> torch.Tensor: r"""Use weight to aggregate the logits of label words. Args: label_words_logits(:obj:`torch.Tensor`): The logits of the label words. Returns: :obj:`torch.Tensor`: The aggregated logits from the label words. """ label_words_logits = (label_words_logits * self.label_words_mask).sum(-1)/self.label_words_mask.sum(-1) return label_words_logits
[docs] def calibrate(self, label_words_probs: torch.Tensor, **kwargs) -> torch.Tensor: r""" Args: label_words_probs (:obj:`torch.Tensor`): The probability distribution of the label words with the shape of [``batch_size``, ``num_classes``, ``num_label_words_per_class``] Returns: :obj:`torch.Tensor`: The calibrated probability of label words. """ shape = label_words_probs.shape assert self._calibrate_logits.dim() == 1, "self._calibrate_logits are not 1-d tensor" calibrate_label_words_probs = self.normalize(self.project(self._calibrate_logits.unsqueeze(0), **kwargs)) assert calibrate_label_words_probs.shape[1:] == label_words_probs.shape[1:] \ and calibrate_label_words_probs.shape[0]==1, "shape not match" label_words_probs /= (calibrate_label_words_probs+1e-15) # normalize # TODO Test the performance norm = label_words_probs.reshape(shape[0], -1).sum(dim=-1,keepdim=True) # TODO Test the performance of detaching() label_words_probs = label_words_probs.reshape(shape[0], -1) / norm label_words_probs = label_words_probs.reshape(*shape) return label_words_probs